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CHAPTER 1
INTRODUCTION
1.1 Motivation for the Use of Microstrip Antennas

In recent years there has been an increased interest in microstrip
antennas, primarily due to their surface conformability, compact
structure and ease of construction. A general microstrip antenna can be
pictured as in Figure 1.1. The antenna element is separated from the
ground plane by a suitable 1low-loss dielectric medium. Since these
antennas have such a low profile, they are suitable for high velocity
vehicles where wind drag must be kept to a minimum.

Experimentally, these antennas have been found to have a relatively
narrow bandwidth. Yet because these antennas are so thin, there is
still active interest in finding a simple analytic model to describe and
predict their behavior.

A major use for the microstrip antenna is as an element in an array.
Experimental results indicate that no "magic" element shape exists that
will give a substantially wider impedance bandwidth than any other
shape. For this reason, it would seem more important to concentrate on
a short list of simple geometries, rather than a 1long 1list of random
geometries. Of course, the short 1list must include elements whose
radiation patterns are sufficiently varied, so as to allow a broad range
of array design. Such a 1list could include the disk, half disk,
annulus, rectangle, square and triangle. A simple and accurate theory

has been developed for use with these geometries. In Chapter 2, the
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Figure 1.1. A general microstrip antenna element.




disk element is analyzed, and the method of analysis can also be applied

to other simple geometries.

1.2 Literature Review

In the literature, some scattered and 1limited attempts have been
made to analyze the behavior of a few microstrip elements. Some of
these attempts have incorporated doubtful and even invalid assumptions.

Munson's analysis of the rectangular element is one example, [1].
It was claimed that the input impedance could be modelled as two slot
antennas separated by a low impedance transmission line. The obvious
oversight 1is that this uses superposition of the power patterns of the
two slots, thus neglecting any mutual coupling. A similar approach was
used by Derneryd [2]. No attempt was made to compare calculated and
measured input impedance results in either [1] or [2], and their
analysis is very limited since the feed point must remain on that edge
of the rectangle where the E field is constant. Finally, the method can
not be used for any other element shape.

Another method [3] used a grid of linear and V shaped dipoles to
approximate the radiating element. This method shows an agreement
between calculated and measured input impedances that is quite inferior
to that obtained by the simple analysis in Chapter 2. Even so, the
method was inefficient with respect to the computer time required. The
analysis of Chapter 2 shows excellent results, and requires orders of
magnitude less computer time than that of [3]. As an example, the
resonant radiation pattern and the input impedance for 15 frequencies

near resonance were calculated in under 2 seconds for a disk antenna.




CHAPTER 2

ANALYSIS OF THE MICROSTRIP DISK

2.1 The Simple Cavity Model

The method used in analyzing the disk is somewhat different from
methods found in the literature, and is quite simple. Analytic results
obtained using this method agree very well with measured data, and it
appears that validity has not been sacrificed for simplicity.

Power is fed to the antenna by either a coaxial 1line piercing the
ground plane, or by a microstrip transmission line at the edge, as shown
in Figure 2.1. The antenna is modelled as a closed cavity, bounded on
top and bottom by perfect electric conducting (PEC) planes, and around
the perimeter by a perfect magnetic conducting (PMC) ribben as in Figure
2.2. Henceforth, the disk will be oriented with the z axis as shown.

The PMC wall approximation would seem plausible with respect to the
fields between the conducting planes since the radially directed surface
current (on the underside of the top PEC plane) must approach zero at
the edge. Of course, this can not be assumed for the external fields
since such a boundary would not allow radiation. However, the radiated
power can be approximated once the internal fields are known at the
edge. The source of the radiation is taken to be the edge distribution
of the internal fields. Calculating the radiated power in this manner
requires the assumption that the internal field structure is relatively
independent of the radiated power. The measured quality factor of these

microstrip antennas is high so that this assumption is plausible.
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Figure 2.1. A disk element, showing coaxial and microstrip
feed methods.
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Figure 2.2. The simple cavity model, showing the equiva-
i lent magnetic current ribbon.
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Since the antenna is relatively thin, the internal fields are taken
to be TEM. 1Indeed, for the frequencies of interest, the TE and TM modes
of all orders are well below cutoff and the electric field is
perpendicular to the disk surface, with no divergence.

When excited, the internal field structure of this simple cavity
model can be found using either mode matching or a modal expansion. It
is then straightforward to calculate the stored energy, radiated power,
internal copper 1loss and the driving point voltage. When all of these
parameters have been determined, the input impedance and radiation
pattern can be computed. It is because the geometries are simple and
fit nicely into some coordinate system that mode matching and modal
expansion can be used here. This 1is one motivating factor for

concentrating on a short list of simple element shapes.

2.2 The Internal Field Structure

As mentioned, the internal fields can be found using either mode
matching or a modal expansion. Since the numerical results are found
using a computer, it is advantageous to investigate both methods for
simplicity and/or speed of calculation.

Within the cavity the fields must satisfy the boundary conditions
and the vector wave equation. However, one major difference hetween
modal expansion and mode matching is in the way the individual mode
terms satisfy these conditions. Although both methods use an infinite

set of orthogonal functions (modes), a resonant mode expansion requires

that each mode term satisfies the boundary conditions, and that the




total field satisfies the inhomogeneous wave equation. Mode matching
requires that the sum satisfies the source condition, and that each term
obeys the source free wave equation.

The vector wave equation is well known to be

2, 2, & )
VE+K v - J. )

1E = jouJ - Jue (2.2.1)

where K' is the complex wave number in the dielectric. For the thin
cavity, the source 3 has some special properties. For the microstrip
feed, the source current is assumed to be just ﬁ X ﬁ, where H is the TEM
H field of the transmission line. For the coaxial feed, the source is
taken to be equal to the current density on the center conductor, as it
existed in the coax. However, this source is simplified by considering
the current distribution to lie on a cylinder of constant radius. Thus
both sources are considered as rectangular distributions in ¢ and as
having no divergence. For simplicity the total feed current is assumed

to be one ampere, flowing into the port. Both source distributions are

of the form shown in Figure 2.3. Therefore, Equation (2.2.1) reduces to

2 ;
VE +KE = jwuJ_ . (2.2.2)
z 1 2 z

It should be mentioned that for a coaxial feed, no attempt has been
made to enforce the boundary condition that Ez must be zero on the
coaxial center conductor. Yet, from the good agreement obtained between

the calculated and measured results of Chapter 3, this appears to be of
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Figure 2.3. The source current distribution used to model
i the coaxial and microstrip feeds.
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no major consequence. This could be attributed to the fact that the
conductor length, within the antenna, is very short.

A more rigorous treatment might be to consider the system as a

cylindrical cavity with an offset coaxial feed. The internal fields {
could then be found more exactly by matching modes across the annulus of

the feed. However, the point of this analysis is to attempt to obtain s

approximate analytic results with a simple but perhaps more complete
b model than those found in the literature.

As in most problems of this type, the Green's functions are found
first. Hence, the feed current distribution is taken as a point source
and the resulting fields are convolved with the actual source
distribution used.

The functional form of the source free resonant modes used in the

modal expansion is found from

V'Y + Ky =0. (2.2.3)

i A ——

In cylindrical coordinates this gives

Wmn = Jn(Kmnp)cos(n¢) . (2.2.4)

In terms of these modes, the electric field can be expanded as follows:

Ez=ZA
m,n
=0

mnvmn * (2.2.5)

From Maxwell's equations the H field for each term is

10
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3 avmn o awmn -
Hmn ==u.i—l.x pad g p $ Amn ' (2.2.6)
Since the exterior boundary condition is that H¢mn= s
' =
Jn (Kmna) =0, (2. 2.0

where a is the disk radius. Therefore, the resonant frequencies are
those where (K a) is a zero of J .
mn n

Requiring the total field to satisfy the inhomogeneous wave equation

gives
JwuIs($)S(p = p") /o' = § A (K2 - K2 )Y
+ “mn 1 mn’ mn ? (2.2.8)
m,n
=0
t where
2 2
i ¥ b i -Kmnwmn ) (2.2.9)

from Equation (2.2.3). Here, I is the source current in amperes and,
from the symmetry of the disk, the source is taken to be at (p',¢ = 0).
The fact that the {wmn} are orthogonal can be used as an advantage.

P Indeed if

. ' ' .
. € Kaola Ep® +C 3, (R0 =0, (2.2.10)

then from

Rt &
—
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’

-~ NS
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a
[ 3 (R _p)I (X )pdo =
o ™ mnTq pq

r
9 2 2 2 (2.2.11)

a’ R ) + |J (K a) 1 L M (m,n)=( )

1 > A \mn‘ B - . 2 (P >0 P,q
(K a)
mn
o, otherwise ,
=

we can say

§(¢")8(p 0")
o - ¥ odpd¢ =
pqo od¢

juul [ [
p ¢ p

(2.2.12)
2 2
) ALK - K ) g i y nwpqodpd¢ A

m,n

Performing the integrals gives

2jupd (K p")
A & n mn
" o (2.2.13)
2 2 2 _ 2 31 - —B g
ma (1 + 6mO)Jn (Kmna)(l(l - Kmn) e 5

Finally, from Equation (2.2.4)

.- (2.2.14)
E ) Aann(Kmnp)cos(n¢) .

m,n
=0

For the mode matching case, one needs to consider the homogeneous

equation in each source-free region. This is




2 2 s
VY +K ¥ =0 (2.2.15) |
m 1 m {
where ;
y = = e
, Jm(Klo)COS(m¢) or . Ym(Klv)«os(m¢) (2.2.16)

or any linear combination of Yr]and Jm. The source

J = 1£0)8¢0 - 0") /0" (2.2.17)
t
+ 18(p -p") cos (m¢)
L J = O ) W ?I_i_%;;7 (2.2.18)
m=0

Therefore, the source current can be considered to be a sum of

cylindrical current sheets located at p = p'.

For the Green's functions, f(¢) is the Dirac delta. Figure 2.4

shows the two regions of the disk, separated by the cylindrical current

!
1 can be restated in terms of its Fourier components. Hence,
sheets. Matching of the fields across these current sheets constitutes

the source condition.

In region 1, p'<p<a, and

g

‘ ™ 1{ Agn(K p) + B Y (K 0) } cos(ms) (2.2.19)
& m=0
E At p = a,

e 5 O i -
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Figure 2.4. The disk, showing a source current distribution, ’
the location of the equivalent cylindrical
current sheets, and the two source free regions |
of the mode-matching analysis. |
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—2%1 . ¢

3 (2.2.20)
ap

With the orthogonality of the cos(m¢), the result from region 1 is
| TS 4 Q;(' -
{AmJm \kla) + BmYm (.11)} 0 . (2.2.:21)

where the derivative is with respect to the entire argument.
In region 2, Bessel functions of the second kind are not permissible
since they require a singularity at o = 0 . Hence,

4

E. =) CJ (K p)cos(mo) (2.2.22)
Zy mm
m=0

Using Equations (2.2.19) and (2.2.22) and requiring E, to be continuous

at the source gives
AJ (Kp") +BY (Kp') =CJ (Kp") (2.2.23)
mm mm mm

where the orthogonality of cos (m¢) has been used.

At the source

o X (Hl - n2)$ =] (2.2.24)

From Equation (2.2.6) and orthogonality,




K C -A)J'"(Kp') -BY "(Kp' 1
3 [(m BERICER mm(lp)] s

wy mp'(1 + Gmo)

Equations (2.2.21), (2.2.23) and (2.2.25) constitute a determined
set of equations for the Am, Bm and Cm. Using Cramer's rule for
determinants yields

' £ ' K o!
JouY (Kln)Jm(glp ) jqum( ]p )

Am = - p Bm = —
L
2(1 + amo)Jm (Kla) 2(1 + Gmo)

(2.2.26)
Jou { Jm(Klp )Ym (Kla) - Ym(Klp )Jm (Kla) }
m = - .
20 + 8§ )J '"(K a)
mo’ m 1

Finally, Equations (2.2.19) and (2.2.22) can be used to find the
electric field anywhere in the disk, due to a point source.

The results from the resonant mode expansion and from mode matching
can be checked for consistency by comparing the E field Green's
functions from the two methods. From the theory of complex variables,
two systems are equal if their residues are equal and neither system has
poles at infinity.

Consider any point within region 2 of Figure 2.4. Multiplying
Equations (2.2.14) and (2.2.22) by (K? - K;n) and taking the limit as K,

approaches Kmn gives

16




2 2
2 ' ) k:
jqun(Kmno )Jn(Kmno, s (Kl K oo )
g
2 2 o A ) '
a an (Kmna) [1 X 3)2] K1>Kmn Jn (Kmna)
mn
(2.2.27)
jwu ] ]
LSRN Jn(Kmnp)Jn(Kmnp )Yn (kmna) i
But since
2 2
(K -K ) 2K
14w 1 mn mn
: = ) (2.2.28)
5 K »K J "(K a) aJ "(K a)
h ] mn n  mn n  mn
the relationship simplifies to
2
Y '(K a)J (K a) 2
2 _.h_mn_n__mn e S ) (2.2.29) i
. (K a) J '(Km a) (K a)2
mn n n I
]
The Wronskian relation that
2 > ' 4, ' >
;TE;;ET Yn (Kmna)Jn(Kmna) Jn (kmna)Yn(hmna) ; (2.2.30)
‘i gives the requirement that
H
1 2
J"(R_a) =J (K a) |1- -t (2.2.31)
F n mn (Kmnﬂ)
|
P ¥ for the two methods to be consistent. But, Equation (2.2.31) is true
_ g from Bessel's differential equation, and inspection of Equations
| . (2.2.14) and (2.2.22) shows that no poles 1lie at K = -. Similar
k
b
; : results can be shown for any point in region 1 of Figure 2.4. Thus,
: mode matching and a resonant mode expansion yield identical results for
i
& 1
= | T




the simple cavity model where the divergence of the source is zero.
Equations (2.2.14) and (2.2.22) indicate that evaluation of the
internal fields requires a double summation for a modal expansion and a
single summation for mode matching. Hence, it appears that less
computational effort is required when using the results from mode
matching.
The fields due to a source with a specific feed width are found by

convolving the Green's functions with the source distribution. Thus,

PO =
E, = 5z * L F (p) cos(ms)
m=0
(2.2.32)
=} F_(p)cos(m¢) §%£§$§l .

m=0
Here Pa(¢) is the unit "pulse" of width 2a, and Fm(¢) is the separated
P-dependent function found in equations (2.2.19) and (2.2.22).
Therefore, the electric and magnetic fields are simply the Green's

functions multiplied by {sin (ma)}/(ma). In regions 1 and 2 the

electric fields are then

p sin(m¢ )
e ) {Ame(Klo) + BmYm(klo)} cos (mé) - 3
m=0 »
(2.2.33)
r sin(m¢ )
E,=] CJ (Kp) cos(mp) ----— o
m=0 o5

18
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2.3 Dissipation, Radiation, and the Stored Energy
With the E field known throughout the disk, the time-averaged

electric stored energy can be found from
: 2
W =—— 1/ |E|] dv . (2.3.1)

The forms for the fields in regions 1 and 2 of Figure 2.4 are stated in
Equation (2.2.33). Since the fields are separable in ¢, 6and z, the

volume integrals are easy to evaluate.

Let the electric field be represented in the following manner:

B, =% TP (p)cosmy),

z)
m=0
(2.3.2)
_jwu Y
v = ——— 3
E ) ) Qm(u)COb(m®).
m={)
Then, the electric stored energy is expressible as
£ e (wp)?t © o p' * a %
i s UL /QQ odo + [ PP odo
s m=0 n=0 0 o
(2.3.3)
o
« [/ cos(m¢)cos(n¢)dé o
0
Since the last integral is zero except when m = n,
tofr(wu)ztn o [ p' a ’
= 2pdp + P d & 2.3.4)
v, 3 L |7 lqlede + 7 [P [%0do (2.3

m=0| 0 P

Each integral in this equation can be evaluated in closed form since the

19




Pm and Qm are just

sin(m¢ )
pL= (A J (Kip) + B Y (K0)}) ~——7;Efi- 3
sin(m¢ ) (2.3.5)
Qm 2 Cme(Klp) (1 + 6m0¥m¢w X

where Am,Bm and Cm are given by Equation (2.2.26). It is well known

that

b 2
£ U 2(K p)odp = &— EJ'(KO)]Z
a - 1 2 » 1

(2.3.6)

2 b
+[1- 2 ]u2<xo> B
(K p) m oy
~ a
1
where Um is any linear combination of g and Ym. By taking the

summation inside the integrals of Equation (2.3.4), the electric stored

energy can also be evaluated using a numerical quadrature. Thus,

©

cnerwt(wu)2 e
W= Ee 1 7 T o |2(1+ 8 )edo
e m mo
0 m=0 (2.3.T)
a % 2
S ) |Pm| (L+5 Jodo| -
p'm=0
The power dissipated in the dielectric can be found from

P, =0/ |E|%dv , (2.3.8)
d v

But this is just

Pd = 2m6we y (2.3.9)

where § is the dielectric loss tangent.
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The copper loss is approximated by initially assuming that it does
not change the internal field structure. Therefore it is calculated
using the internal fields derived with r ~fectly conducting boundaries.
Again, this method is plausible since the copper loss is very small with
respect to the reactive power within the disk. The copper 1loss is
related to the H field tangent to, and the E field normal to the copper
boundary.

In a good conductor the skin depth is

2
=V wwo (2.3.10)
where ¢ is the conductivity in mho-cm. For the 1loss due to the

tangential H field, the current density (JV) within the copper is

assumed such that

fade =3 (2.3.11)

where JS is the surface current density that would exist if the
conductivity were infinite. JV is the unknown volume current density
flowing parallel to the surface, with form

-z/A

[3,1 = 13 1e (2.3.12)

Therefore,




%
E
|

i

|J0| = J /A
so that
o BElETY
el

Since the fields are assumed to be TEM,

o | = Il .

The power dissipated in the copper is

P -t S| | ?dv
cuj g v v
so that
S - a8 2%
Pcu & _2_ Vs e-ZZ//\ ! ! lelz -
1 oA? z=0 r=0 ¢=0

But this is just

= W
Pcu1 oAty h

where the factor 2 accounts for both top and bottom boundaries.

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)

(2.3.17)

(2.3.18)




The copper loss due to the E field is found using the fact that the
normal D field is continuous at the copper boundary. Since the

permittivities of the dielectric and copper are %

cu
v

Since the E field in the copper varies in the z direction as

i (2.3.19)
: e 1 + |
‘cu ‘o [ jwﬂo] 2
and for a good conductor |
|
o :
Jac . 3 (2.3.20) :
o 1
1
1
|
then i
3 jwcoer !
1 Ecu ot Ed . (2.3.21)
The general copper loss is
P =0/ |E|%dv . (2.3.22)

P —

A(e € w)? 27 a
0

|2ds . (2.3.24)

L — s 1 |E
@.0 p=0

Cu, o

TR Rl (2.3.23)
the copper loss due to Ez is

{
d

”v WA




where, again, the factor 2 accounts for both top and bottom boundaries.

This is expressible as

A’K W
1 e
P B .32
Pcu2 otud (2.3.25)

The total power loss in the copper is now seen to be

W+ A’K °W
h 1 e .
P = « (2.3.26)

cu atuh

However, the skin depth is so small that the loss due to the tangential
H field is the only one of significance. The total copper loss is then
approximated by Equation (2.3.18).

The radiated power is found using the E field at the edge of the
disk. From Equation (2.2.33), the field at the edge reduces to

= TR DSOS ]

E_(a,0) = ) e ’ (2.3.27)

! +
nKla o Jm (Kla)(l émo)m¢w

where ¢ is the azimuth angle with respect to the source. Using a
Huygen's surface over the entire cavity, and assuming that negligible

currents flow on the exterior surfaces of the copper boundaries,
K=nXEz (2.3.28)
n zz y .S

where is is an equivalent magnetic current ribbon. 2




The far field electric vector potential is well known to be

=-jK r
F = -2 9
4mr

L (2.3.29)
o % 2

O oy

where the coordinate system is as in Figure 2.2 and the factor 2

accounts for the ground plane image. Assuming the thickness to be small

: gives
JKoT 21 JK (x'sin(0)cos(4) + y'sin(0)sin(e)}
S e ™ j A x'sin(0)cos(¢) y'sin(8)sin(¢ ;
b e (I)Kse ds', (2.3.30)

where the primed variables are source coordinates.
] The vector potential can be found as the superposition of its |

rectangular components. Since

¥ 2.3.31
N K8, : (2.3.31)
and
' } ¢ = -;sin(dﬂ) + ;cosw') 3 (2.3.32)
then
4 -jKor
i F 3 -jtwpe © Jm(Klp')sin(mow)
; 2n2rK;  'm=0 Jm'(Kla)(l + émo)m¢w
(2.3.33)
|
2n : A jK asin(0)cos(¢"=¢)
« / cos(m¢){ycos(¢') - xsin(¢')}e © de'
0

:
!
:
¢
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Letting
-jK r
-j2wute ©
- ST S = n
C(r) ﬂ—“2;7i}r and a Koa sin( ) ) (2.3.3“)

and using the fact that

eju cos(¢) _

v m jmé
) I (we " (2.3.35)

m=-o

the far field vector potential reduces to

P = Jm(Klo') sin(m¢w)
g T TR (i -
y n=0 Io K@@ + 6 ) (mg )
(2.3.36)
E o Jn(m) 2n{%iﬂ(¢'i} { .
2 () Trm——e r cos(md') cos{n(é' - ¢)} d¢' .
aso (1 + Sno) 0 cos(¢")

By the orthogonality of the cos (m¢), Fy and Fx reduce to

Fx 0
e [ CE ) B L Stk B 4
Jl '(K-la)
(2.3.37)
c)“’ 2 Jn+1(KlD') - Jn-l(K]O') sin(n@)
: e o T
el 1 Jn(“) T4 (K,a) b Gnl) J-1 (Kya) | |cos(n¢) .
and can be written more simply as
F © R sin(m¢)
X - )* m . (2.3-38)
Fy m;O Sm sin(m¢)
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In the far field

> -> A - 1
E=VXF-= -iK r X T+ 0(—}7) 5 (2.3.39)
so that

E = _jKo-{ 2 sin(9) [cos(¢)Fy - sin(¢)Fx]

(2.3.40)
+ ; cos(e)Fx - ; cos(O)F{} -
In polar coordinates, the E field components are
E6 = cos(¢)Fy - sin(ct»)f"x Ez =0
(2.3.41)

E¢ = ~cos(9) [ cos(¢)Fx + sin(¢)Fv:] .
Once Fx and F} are known, the far electric field can be found for any ¢
and 6. From this, the radiation pattern can be calculated. The

radiated power is found from

1 n/2 2n % ’
P em—= [ J [R}%ge sin(p)dede , * £2.3.%2)
& "o 0=0 ¢=0
where

* %
|[E|]2 = EE ¢ EE +EE. . (2.3.43)
X X yy z Z
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The integral over phi can be carried out in closed form. With

orthogonality, the expression for the radiated power can be further :

reduced and the integral over 6 can be numerically evaluated.

2.4 Input Impedance and the Distributed System

In general, the input impedance of a rigorously analyzed system can

be found from

P+ j2u( - W)
} e m

- (2.4.1)

“in V2
or

P+ j2w(W - W)
7 o i G o U (2.4.2)
in 2
1

or even by

7 ,% . (2.4.3)

[
=

Here, P is the power dissipated in the system, V is the driving point

voltage, I 1is the source current, Z . is the driving point impedance

i
with no other ports on the disk, and We and wm are the time-averaged
electric and magnetic stored energies. However, for the disk antenna,

‘ the copper loss and radiated power are calculated using perturbation.

Therefore, the above equations can not be expected to agree since the

input voltage is insensitive to losses calculated in this way. In fact
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the radiated power may be much larger than any other loss, so that the
disagreement between the above equations can be severe.

An extremely efficient method for calculating the input impedance
can be seen by considering that measurements show the microstrip
antennas to have a high Q. Analytically, the quality factor of any

system is defined as

w ¢ Stored Energy (2.4.4)
Total Power Loss

Qs

Since the measured Q is very high, the origin of the power 1loss is
unimportant. This indicates that the losses can be redistributed with
little effect on the internal field structure. Since the input voltage
is directly related to the E field at the feed, Equation (2.4.3)
indicates that the input impedance will be relatively unaffected by such
a power 1loss redistribution. This result may be paralleled by the
simple high Q RLC tank circuit whose input impedance 1is nearly
independent of where the loss occurs.

Once the copper, dielectric, and radiated power 1losses have been
calculated as 1in Section 2.3, they can be distributed throughout the
dielectric. The system will then consist of a perfect cavity with a
modified lossy dielectric.

The losses are redistributed by modifying the dielectric 1loss

tangent. From Equation (2.3.9), the modified loss tangent is defined as

Pcu + Pd + Pr
6eff 5 2wwe % (2.8.5)
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The complex wave number for the modified dielectric is then

g Lo w\/(l - 36 g due (2.4.6)

and the E field can be reexpanded using Equation (2.2.33). The input
impedance is then efficiently evaluated using Equation (2.4.3).
The input voltage can be found using the E field from either of

regions 1 and 2, and the fact that
V=E .zt . (2.4.7)

However, since the voltage is averaged over the feed width (due to the

presence of the feed conductor), the final expression for the input

voltage is
o sinz(m¢w)
- '
L mzo €l Kigee ") ‘7;ﬁzpjr—- 3 (2.4.8)

It is interesting to note that the quality factor of the disk antenna is
Just the reciprocal of the effective loss tangent. Indeed,
w(W + W)
e m

Q= e (2.4.9)
Py

However, we = wm at resonance. Thus, Equation (2.4.5) gives

20W 1
e

Q=

(2.4.10)

PT §

'—"




This relationship can lead to some major computational savings since
the quality factor is relatively independent of the feed location. Near
the m-th resonance, where one term dominates all others, it is clear

that

J (Kyp')
m

E(p=a) « j;razﬁ;; (2.4.11)

| But the radiated power is proportional to the square of the electric

field at the disk edge so that

i
Jm(Klp')
. Pr « 3~TTKT;7 (2.4.12)
m
g
‘ Also
2
Jm(Klv')
Weu: W s (2.4.13)

with both copper and dielectric losses being proportional to we.

Therefore, as 1long as the resonant term dominates all others in

e e

magnitude, the effective loss tangent will remain nearly constant. This

R

indicates that one effective loss tangent can be used to find the input
impedance for any feed location where the dominant mode is excited. The

Y same loss tangent can be used for any frequency near resonance since one

Y

mode is still dominant. This means that the radiated power and electric
stored energy have to be calculated only once for all of those data

points. The magnetic stored energy is never needed since the input

impedance is equivalent to the driving point voltage when the source

WA

¢
b
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current is assumed to be one ampere.

2.5 The Disk Antenna with Two Ports

The general multiple-port disk of Figure 2.5 can be used as one of
many elements in an array of microstrip antennas. Another use for
multiple ports is in exercising some form of mode control by placing
shorting studs (short circuited ports) about the disk. The input
impedance of a multiple-port disk can be approximated by wusing the
simple model of the previous analysis. However, for simplicity, only
the two port disk is analyzed here since the analysis readily
generalizes to any number of ports.

A two-port network is described by

v, Zy1 Zy I ¥

\F! Z21 232 I;
where the currents are directed into each port. The open circuit Z
parameters have been chosen since all are calculated with one of the
port currents equal to zero. For the simple cavity, a port with no
current is the same as no port at all, so that each parameter reduces to

a one-port calculation. The Z parameters are

<

zi] = ’ (2.5.2)
: 7 1,=0, kéJ

|

so that zin is equivalent to the voltage that exists at the location of

the i-th port with that port removed (when I is taken as a one ampere
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: i Figure 2.5. A general multiport disk antenna.
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source). From equation (2.2.33), the voltage is known for any location
on the disk, and by reciprocity, Z]2 - 221‘ From Equation (2.5.1), the

input impedance at port 1 with a loaded second-port is

2
v (Zy,)

Z, =t =a 4 s (2.5.3)
in I, 11 209 ~22)

where zL is the load impedance presented to the second port.

2

ce Acceler n f eries t
The fields in the disk are represented by an infinite series as
shown in the analysis of Chapter 2. It has been found that the use of
asymptotic forms, instead of truncation, leads to more accurate analytic
results for the input impedance. Simple asymptotic forms have been
found for both the input voltage and the electric stored energy.
Radiation due to the non-resonant modes is negligible so that an
asymptotic form need not be found for the radiated power.
The advantage of using the asymptotic forms for the tail of a series
is that a closed form expression, or one which converges more rapidly
than the original form, can often be found. Using Khummer's well known

transformation, any series S, as in

A (2.6.1)

can be rewritten as




P ®
s, =2 § fa - *m]+ . S (2.6.2)
£ m=1 m=1
where the Am and Xm are the actual and asymptotic terms respectively.
As indicated, when the upper limit (P) tends to infinity the sums S‘ and
52 become identical. However, by using Khummer's transformation, the
rate of convergence has been greatly increased. Therefore, truncation
of 82 will cause less error than the truncation of S].
Investigation of the equations for the internal fields shows that
the asymptotic terms must use the large order approximations for the

Bessel functions. For large m, the Bessel functions have asymp-

totic forms of

(2.6.3)

From Section 2.2, the electric fields in regions 1 and 2 of Figure

2.4 are known. Substituting the asymptotic forms for the Bessel

functions gives

~jwp | p! ¢ 0 = I et cos (m$) sin(m¢w)
B n ™ 7m re L i [ p | AL % S
J w
) (2.6.4)
|
- - jou [ P ]m ([ o'T" [ a]™| cos(me) sin(mg )
- — B - e——— + —_— I e — A
B2 m”™ 2m | a a | L o' (m¢ ) .
. -
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In simplifying to these final forms, the relations

m+ 1 - i
li : e .
e - lim [m‘] and 1fm ['T ] -0 (2.6.5)

were used. The asymptotic form for the electric stored energy is found

from Equations (2.6.5) and (2.2.33) to be

el (‘),)2 8 2m o 2m sinz(m¢, )
(w) N 021‘ g N 1 + = + 2(a-p") T ——z—w- 3 (2.6.6)
e/m .. 2’
w
This is largest when p'= a, or
2 2
€€ 3 sin (m¢w)
(we)mm 2 - ms% = g (2.6.7)

Even for this largest case, ¢w is always large enough so that the (we)m
diminish rapidly with increasing m. Therefore, Equation (2.6.1) is used
to calculate the electric stored energy. Since convergence is very
rapid, the series is simply truncated at some order N. In the actual
computer program, the series was truncated when the last term added was
less than .05% of the accumulated total.

The asymptotic expressions for the Z parameters are found from
Equation (2.6.4). As pointed out in Section 2.5, the Z parameters all
reduce to voltages which, in turn, reduce to electric fields. Averaging

the voltage across the feed width gives a Z" with asymptotic form

: 2m 2
~jwut ! Sin(ﬂ\@w)
(Zn)m el B e R S B A I (2.6.8)
w

27mm
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For the cross-port parameters, the asymptotic form is different for the

two regions of the disk. When d wj (where the j-th port is the

F’i

source port),

-jwy o ) . cos(m$,.) sin(red ,) sin(md )
(Z ') " “i_i_ .L:‘L‘ - th. B L }J?ﬁfnx,,,ﬂ}‘, ——l o e )
ijJm 2nm a“ n )

Otherwise, the ”j / wi‘§erm is inverted. Inspection of these equations
shows that the rate of convergence decreases as 04 approaches ..i, and
as both o4 and oj approach a.

Rapidly converging forms can easily be found for these asymptotic
expressions when Pig ™ “j = a, Or when 04 =p., . For these cases, at
least one term in the brackets of Equation (2.6.9) 1is identically 1.

For that term, the sum of the asymptotic series can be evaluated quite

rapidly, using Clausen's integral. Indeed,

oi sin(m¢w1) sin(mtbw;) cos(.m:b}‘p)_ 7 ..lA._ ‘-'_ qu‘.m,(f"w.‘_;, _¢.w_‘_ -_ :11\:,_)_}
¢ - L c
m=1 m3¢ 14 - boy¢: e m
W' W
) o] = + bl }

3 z iﬁiﬂ?ggﬁgr_}ﬂlm-:§E)_4 (2.6.10)

m=1

1

© Cos{m(‘t)‘l + (b = ®]-\)} \“: (‘OS{m(l‘\ 1 + ':7 2 + ‘b]‘w)}
R R mictietn: IS, L Y § Pt TS Rl e

m=1 - m=1 e

But, each of the above sums is known to be the integral of Clausen's
integral, found in any major handbook. Numerical evaluation of these
sums is straightforward and is outlined in Appendix C.

When the radial feed locations are not equal, the series of (2.6.8)

and (2.6.9) converge at least as fast as a geometric series. For these




cases, Z,. is evaluated as in Equation (2.6.1). However, for cases

ij

where the radial feed locations are nearly but not quite equal, the form

P q
z,,.® + (2.6.11)
ij mzo Am mzp Am

is used to obtain Zij since the Xm are easier to evaluate than the Am.
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CHAPTER 3

ANALYTIC AND EXPERIMENTAL RESULTS

3.1 Determination of 6 and ¢ To analyze the microstrip disk, the copper

conductivity and dielectric 1loss tangent must be specified. The
conductivity of copper 1is well known to be 580 Kmho-cm, and the
dielectric 1loss tangent is given by the manufacturer of the dielectric
in the form of a frequency dependent graph. For convenience, it is
partially reproduced in Figure 3.1. However, when using these values to
calculate the input impedance locus, theé _results are substantially in
error.

To illustrate the point, a microstrip disk with a radius of 6.7 cm
and a thickness of 1.5 mm was fed at a radius of 3.35 cm, and analyzed.
The theory indicates the lowest resonance to be near 810.61 MHz since
this 1is where the first minimum of Jn'(K‘a) occurs. For this frequency
the loss tangent is given by the manufacturer as 0.00085. The Smith

chart locus for Z was calculated using the manufacturer's loss tangent

1
and the conductivity given above. For comparison, the calculated and
measured results are shown in Figure 3.2. These results indicate that
more 1oss exists in the system than the theory presently accounts for.
At this point it was decided that the copper loss and loss tangent
should be determined experimentally.

To experimentally determine o and § , a bona-fide rectangular

cavity was constructed by closing the radiating aperture with copper

foil, as in Figure 3.3. With the bona-fide cavity, the effective loss
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Figure 3.1. Manufacturers loss tangent data for Rexolite 2200
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Figure 3.3. The bona-fide cavity used to measure the loss
tangent and the copper conductivity.
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tangent is

N
cu d

A waé»-—- ) {R.1.1)

§

where the radiated power has been eliminated. The resonant Q is still

given by

Q=5 . (3. 1.2)

Since Pcu and § are given at resonance by

20W A 1 2 W
P e and B (3e13)
cu 2t § P
d
Equation (3.1.1) leads to
g - (3.1.4)
q § + e

The quality factor and dielectric thickness can be measured, leaving ¢
and A (the skin depth) as two unknowns. By constructing two similar
cavities with different thicknesses, and measuring their quality
factors, § and A can be determined from the resulting simultaneous
equations. Although Equation (3.1.3) neglects the loss in the copper
foil wused to seal the cavity, it is assumed that this extra loss is
negligible since the cavity thickness is much smaller than any other

dimension.

L3
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Once the skin depth is determined as above, the conductivity is

found from the relation

Py = B (3.1.5)

Unfortunately, the manufacturer's data indicate that the 1loss tangent
(for the Rexolite 2200 dielectric) varies with frequency. For this
reason, § and 0 must be redetermined when the frequency is changed
substantially.

The rectangular cavity experiment was performed for a resonant
frequency near 428.00 MHz and the results are shown in Figure 3.4. The

intersecting lines are each generated by

I>

(3.1.6)

ol
(3% ]
~

With the materials available, cavity thicknesses of 1.5 mm and 4.5 mm
were constructed. Unfortunately, these thicknesses give a set of
equations that is not well conditioned. Because of this, the Q was
measured several times. The locus of points for the upper and lower
limits of Q were then plotted. In Figure 3.4, the resulting region of
intersection shows the uncertainty of 6 and 0. From the centroid of the
shaded area, 6§ = .00083 and A =9.2 um, From Equation (3.1.5),
o = 69.9 Kmho-cm. This method can be performed for each resonant freq-
uency .

From these results the effective conductivity is much lower than the

table value. This discrepancy may be due to surface roughness or
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possibly to a lossy bonding agent.

riat f
From the simple cavity model of Chapter 2, the dominant term
contribution to the resonant input resistance can be predicted to vary

as

) = (R gt ) (3.2.1)

Vi
( 11" pq P Pq

where (pq) is the resonant mode index. From the resonant mode expansion
the dominant term is
j2wn Jq?(x ")
Cnloa™ oD & 1 [ aan
Ki2-K 2) J%2x _a)|l--— (L+6 )
s pa ) Y4 %pq ) a)? p0

Since the dominant term is the only one that contributes a significant
real part, equation (3.2.1) is seen to be true. The theory was tested
for disks of several different sizes, and the agreement between
calculated and measured results was very good. In particular, a disk
with a radius of 6.7 cm and a dielectric thickness of 1.5 mm was
coaxially fed at the different points of Figure 3.5. For the analysis,
a dielectric 1loss tangent of 0.00135 and a copper conductivity of 80.2
Kmho-cm were used, based on the measured cavity results of Section 3.1.
The feed width was taken to be the diameter of the coaxial center
conductor. Some of the more interesting input impedance loci are shown

in Figure 3.6. The resonant input resistance is plotted against radial

ué
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Figure 3.5.

Feed location used to determine the variation
of the resonant input impedance with radial
feed location.
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locations on the disk.
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feed location for all eight feed points, as shown in Figure 3.7. As
seen, the calculated and measured results are in excellent agreement.

For the lowest frequency mode, the cavity model of Chapter 2 has
been successful at predicting both the resonant input resistance and the
shift of the entire locus above the real axis of the Smith chart.
However, for the higher frequency resonances, the theory predicts too
much added positive reactance, although the measured and calculated
resonant input resistances still agree very well. Some results for the
second resonance of the disk of Figure 3.5 are shown in Figure 3.8. The
theory predicts too “huch shift above the real axis, regardless of the
radial feed location. In Figure 3.9 the resonant input resistance is
plotted against radial feed location for both measured and calculated
data. This Figure shows very good agreement and indicates that the
losses are correctly accounted for. For a given radial feed location,
the added reactance is a function of the feed width, as Equation (2.6.4)
indicates. By increasing the feed width from the value that gave good
results at the first resonance, the results from the higher resonances
can be made to agree in the amount of locus shift, without changing the
resonant resistance.

As mentioned in Chapter 2, no attempt has been made to satisfy the
boundary condition that Ez be zero at the surface of the coaxial center
conductor. It may be that this has contributed more error to the higher
frequencies than to the lower.

The results for the higher resonances indicate that the effective
feed width of the coaxial line needs investigation. From the boundary

condition at the center conductor, the electric field near the feed has
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Figure 3.7. The variation of first-mode resonant input
resistance with radial feed location.
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the form shown in Figure 3.10. It is not easy to see how this field

distortion affects the input impedance contribution of each mode. For
the high-order modes, the coaxially fed antenna may have to be

considered as two coupled coaxial cavities as suggested in Section 2.3.

3.3 Variation of Input Impedance with Shorting Stud Location

One disadvantage of the single-port disk antenna is that the feed
must be taken inside the disk to vary the input impedance.
ﬁ Consequently, the feed must be coaxial. In an array of such antennas,
it would be more convenient to feed each antenna with a microstrip line.
This would eliminate a 1lot of unwanted coaxial cabling behind the
antennas.

The simple cavity model predicts that a two-port disk antenna can be
edge-fed and still have a variable input impedance such as that
discussed in Section 3.2. From Equation (2.5.3), if the second port is
shorted then

(Zlg))

Zin L le - "7"—'"’ . (3-3-1)

i b A e

Considering the dominant mode contribution, this is

sin‘(m¢ )
w

i B oty - 300 st R < (3.3.2)
Ain qu [Jp (l\pqp’ ) Jp (l\pq; 2 ) cos (m@lz) (m‘i’wl) : 3+3

If both ports are at the same radius, then
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Figure 3.10. The electric field near a coaxial field.
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. Jp (qup ) sin“(méy,) (3-3-3{
Thus, the resonant input resistance is seen to vary with radius and with

separation of the two ports. For the edge-fed case,

Zin « pr(qua) sin’(m¢ o) 3 (3.3.4)
where the shorting stud is also on the edge.

Equation (3.3.4) was tested with a microstrip-fed antenna, with a
radius of 12.68 cm. The first mode resonance is near 420 MHz. Figure
3.11 shows the disk and the set of short 1locations wused. Some
interesting impedance 1loci are shown in Figure 3.12. Although the
calculated shift of each 1locus 1is incorrect, the resonant input
resistances match very well. Figure 3.13 shows the plot of maximum
input resistance versus separation angle, ¢12. The agreement is shown
to be very good, but the fact that the impedance loci are shifted
incorrectly indicates that the feed width of the first and second ports
may need to be modified.

Another interesting result of the two-port antenna is that

additional poles are introduced into the system where Z = 227, as

L2

Equation (2.5.3) indicates. For convenience that equation is repeated
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Figure 3.11. Short locations used to determine the variation
1 of resonant input resistance with angular
separation of the feed port and shorting stud.
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Figure 3.12. Calculated and measured input impedance loci
for several feed port and shorting stud
separation angles.
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(212)2
= + —
Zin = Zn Z; - Z2) ° (3.3.5)
When ZL2 is a short circuit, a resonance should occur near where 222

passes through zero. However, for an edge fed disk, Z is equal to Z“

22
when the feed widths are the same. Note that the "zero" impedance at
port 2 is converted to a "pole" at port 1. This was verified both
experimentally and analytically. For the disk of Section 3.2, the first
resonance of 222 occurs at 810.61 MHz. However, as shown in Figure
3.14, the single-port input impedance first passes near zero at about
860 MHz. The result of positioning a short circuited port at ¢ = 45° is
also shown in the figure. It is seen from the figure that a second
resonance has occurred near 860 MHz, as predicted by the theory. That

this resonance can be wuseful 1is shown in Section 3.5, where the

radiation pattern is investigated.

y r For Disk Input I
In the analysis of the disk, it was shown that mode matching and a
resonant mode expansion give identical results for the simple cavity
model. From the resonant mode expansion, it is seen that the input

impedance for a one-port disk near resonance is

9hoq
Z1y = —5 —— + (non-resonant terms) , (3.4.1)

2
K1 Kmn

where (pq) is the resonant mode index. Near resonance, the first term
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in the above equation dominates all of the rest. Considering the
dominant term alone, the input admittarice has a nearly constant
conductance over the usable bandwidth, as does a parallel RLC tank
circuit. The Smith chart locus for such a contribution is shown in
Figure 3.15.

The analysis of Section 2.6 gave an asymptotic form for the

high-order non-resonant modes, in terms of the mode matching results.
From Equation (2.6.10) and any handbook on Clausen's integral, it is
evident that the sum of the higher-order non-resonant asymptotic terms
contributes a positive reactance to the input impedance. Experimental

results show that the input impedance locus is nearly a perfect circle

and is always shifted toward inductive reactance for the resonances that
the 1laboratory equipment is able to examine. The result would seem to
be that the sum of all of the non-resonant terms, including the j
lower-order ones, contributes a positive reactance to the input
impedance. i

Since the frequency band of interest is very narrow, the positive

reactance can be approximated as a linear function of frequency, and

thus as an inductive reactance. Adding this inductive reactance to the

dominant mode impedance gives the shifted locus in Figure 3.15.
In Sections 3.2 and 3.3, it was shown that the resonant input

¥ resistance of the dominant mode contributions of the one-port and

i

two-port disks could be varied by changing the port 1locations. This

behavior is quite like that of a tapped RLC tank circuit, where the tap

b
\ location is changed. Considering these results, a simple circuit model
. for the one-port and two-port disks is shown in Figure 3.16. Equation
&
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Figure 3.15. An impedance locus for an RLC tank circuit,
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(2.6.4) indicates that the series inductance in Figure 3.16 is a
function of the feed width and radial feed location. Since the sum of
the non-resonant contributions has a factor w, the importance of these
contributions would seem to be a direct function of frequency. Indeed,
the loci for higher resonances are shifted above the real axis more than
those for the 1lower frequency resonances are. However, experimental
results indicate that the shift above the real axis is less than the w
factor would cause. From a term-by-term inspection of the input
impedance, some terms which resonate below the dominant term contribute
negative reactance.

In Figure 3.17, the points of maximum resistance are shown for four
of the radial feed locations of Section 3.2. Although the points seem
to lie on a line of constant reactance, Figure 3.18 shows that the
reactance increases with increasing radial feed location, as Equation
(2.6.4) indicated. The results are somewhat obscured because the feed
width is not actually constant when the feed is moved radially.

From this simple circuit model, "resonance" of the antenna can be
defined as the point of maximum input resistance. This definition allows
the antenna and the RLC tank of Figure 3.16 to resonate at the same
frequency, since adding reactance to the RLC tank locus does not change

the frequency of maximum input resistance, as seen in Figure 3.15.

tion Patter

The far field radiation patterns were measured and compared to

calculated results for the one-port disk antenna. The patterns for the
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Figure 3.17. The locus of resonant input impedance points
for different radial feed locations.
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multiple-port disk can also be analyzed, although they have not yet been
calculated. The radiation patterns are calculated from equation
(2.3.41), where the E field aperture distribution is assumed to be =z
directed only.

For the disk of Section 3.2, the first resonance is near 810 MHz.
The calculated and measured radiation patterns are shown in Figures 3.19
to 3.24. These data indicate that the pattern bandwidth is greater than
the impedance bandwidth. Qualitatively, the calculated and measured
results match quite well. However, no attempt was made to take the
effects of a finite ground plane into account. For frequencies near 810
MHz, the ground plane is about 12 wavelengths on a side.

For a particular mode, the radiation pattern 1is substantially
independent of the size and resonant frequency of the disk, as long as
the relative permittivity of the dielectric is held constant. With this
in mind, the second mode pattern was investigated using the disk of
Section 3.3. For this disk, the second resonance is near 710 MHz. The
calculated and measured patterns are shown in Figures 3.25 and 3.26.
Again, the agreement is seen to be quite good.

The measured results have consistently shown higher cross-polarized
radiation than the theory accounts for. This might be expected since
the E field at the edge of the disk is not exactly z directed, as was
assumed with the simple cavity model.

Although no radiation patterns were calculated for a multiple-port
disk, some were measured for the disk of Section 3.2. A shorting stud
was positioned on the edge of the disk, 45 degrees from the microstrip

feed. The angular reference for all two-port measurements is taken to

67




+ —+ 6 cut
+--=-=+ ¢ cut

vt

=
2%

I
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Figure 3.20. First-mode radiation patterns for the 6.7 cm
disk, f = 800 MHZ, ¢ = 90.
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Figure 3.21. First-mode radiation patterns for the 6.7 cm
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First-mode radiation patterns for the 6.7 cm
disk, f = 810 MHz, ¢ = 90.
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Figure 3.26. Second-mode radiation patterns for the
12.68 cm disk, f = 710 MHz, ¢ = 90.
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be the stud location.

The radiation pattern was measured for the 810 MHz and 860 MHz
resonances, where the 860 MHz resonance is a result of the zero-to-pole
conversion, as described in Section 3.4. The 810 MHz pattern results
are shown in Figures 3.27 and 3.28. They indicate that the radiation
pattern is "anchored" to the shorting stud. This suggests that the
pattern can be be scanned in azimuth by repositioning the shorting stud.
However, if the pattern is scanned in this way, the input impedance will
vary, as described in Section 3.2.

The radiation patterns for the 860 MHz resonance are shown in
Figures 3.29 to 3.31. Figure 3.29 shows the azimuthal radiation
pattern, and indicates that the pattern maximum is aligned with the
shorting stud (in azimuth). Figures 3.30 and 3.31 show the general

shape of the pattern to be the same as that of the 810 MHz pattern.
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Figure 3.27. Measured radiation patterns for the two-port
6.7 cm disk, f = 810 MHz, ¢ = 0.
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Figure 3.25. Measured radiation patterns for the two-port
6.7 cm disk, f = 810 MHz, ¢ = 90.
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Figure 3.29. Measured radiation patterns for the two-port
6.7 cm disk, f = 860MHz, 0 = 90.
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Figure 3.30. Measured radiation patterns for the two-port
6.7 cm disk, f = 860 MHz, $ = 0.
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CHAPTER 4

SUMMARY

In this thesis, an elegant and efficient method for analyzing
microstrip antennas with simple geometries has been introduced. An
exténsive study of the microstrip disk was made, and analytic and
measured results were compared to prove the validity of this analysis
method.

A simple but accurate analytic model for the microstrip element was
developed 1in Chapter 2. From the fact that the radially directed disk
surface current must be zero at the edge, and from the close proximity
of the antenna to the ground plane, the antenna element was modelled as
a closed cavity with the aperture being replaced by a perfectly
conducting magnetic wall. Since the antennas are very thin, the
internal fields ware taken to be TEM only. With the assumption that a
source current must have negligible divergence for such a thin cavity,
the internal fields were determined and confirmed by using both mode
matching and a resonant mode expansion.

An extremely efficient method for calculating the input impedance
has been introduced in Chapter 2. The method is based upon the fact
that the input impedance of a high Q system is relatively independent of
the origin of any power loss. Since the microstrip antenna has a high
Q, the radiated power, copper 1loss, and dielectric 1loss can be
considered as a lumped dielectric loss, without substantially changing
the calculated input impedance. The input impedance can then be found
by finding the fields inside the perfect cavity with the modified lossy

dielectric.




The microstrip disk exhibits some interesting input impedance
properties, as the analysis above, and the measured data of Chapter 3
can verify. Near a resonance, the input impedance locus is an almost
. perfect circle, slightly shifted above the real axis of the Smith chart.
Sections 2.3 and 2.6 show that the diameter of the impedance locus is a
function of the dissipative 1losses and the radiated power, while the
amount of shift above the real axis is a function of the effective width
of the source current distribution. |
With the simple analysis method described above, it can be shown |
that the disk antenna has a very useful variable input impedance |
property, specifically useful for matching. In Section 3.2, it is shown

:
that by radially varying the feed location, the resonant input impedance 1

can be varied by orders of magnitude. In Section 3.3, it is shown that
a two-port disk can have the same property. By varying the angular
separation of the feed point and a shorting stud, the resonant input
impedance can again be varied over orders of magnitude.

Section 3.4 shows that the input impedance for the one-port disk

antenna can be described very accurately and elegantly with a simple

circuit model. The circuit model 1is shown to consist of a series

e at———

inductor and a tapped RLC tank circuit, where the RLC tank represents
the resonant mode contribution, and the series inductor represents the
contribution of the non-resonant modes.
{ Both the input impedance and the radiation pattern of the disk were
A investigated in detail. Chapter 3 shows that the results calculated

from the simple analysis are in excellent agreement with measured data.

However, from the higher-order mode results, it appears that some

e

83

P




additional work must be done toward finding the effective source width
of coaxial feeds.

The accuracy of the calculated resonant frequency of the disk was
improved somewhat by using a method repeated from the literature in
Appendix A. With the method, the resonant frequency error was reduced

from more than 2% to less than 0.7%.




APPENDIX A

IMPROVEMENT OF CALCULATED RESONANT FREQUENCY

From the cavity model of Chapter 2, the resonant frequencies of the

microstrip disk are found to be those frequencies where (K]a) is a zero

of JN(KIa)' However, since this is a perfect cavity result, the field

fringing at the edge of the disk is neglected. In reference [4] a

method has been described to approximate the effects of this

fringing.

By finding the dc capacitance of the disk, an effective radius can be

found, and is always larger than the physical radius.

larger

radius is then used at the microwave frequencies for all calculations.

From the above reference,

aeff =a-Ef

where a is the effective radius, and EF is the extension factor,

eff
is defined by

1/2

2t na U
Ef = 1+ ln(—— + 1.7726 %
TE a 2t

r

The modified resonant frequency is easily calculated from
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where Z0 is a particular zero of Jn'(Z), and Vc is the speed of light in
free space. As an example, the modified resonant frequency is compared
to the original for the disk of Figure 3.5. The measured resonant
frequency is found from Figure 3.6 as 792 MHz. The unmodified resonant
frequency is calculated as 810.6 MHz. This is in error by 2.3 §. From
equation (A.3), the modified resonant frequency is found to be 797.7
MHz. This is error by only 0.7 %. Recall that from the definition of
resonance in Section 3.4, and from Figure 3.6, the resonant frequency is

independent of feed location.
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APPENDIX B

GENERATION OF COMPLEX BESSEL FUNCTIONS

Numerical techniques which are used to generate complex Bessel

functions are well-described in the literature. An outline is presented
here for completeness.

Throughout the analysis of Chapter 2, it was seen that the wave
number (Kl) was complex. Therefore, the Bessel functions having K] in

the argument were also complex. The Bessel functions are found using

the recursion relations

2n
Wn_l(z) + Vn+ (2) o Pn(z) and

1
(8.1)

(z)

Wn_l(z) - Wn+1 2Wn (z) )

where Y is either Y or J .
m m m
Since the large-order asymptotic expression for Jm approaches zero
in the limit, the Jm are found by using a reverse recursion of B.1. The
recursion 1is initiated at some high-order N, with .JN_l and JN
arbitrarily chosen as (1+j0) and (0+j0), respectively. After the

recursion is completed, the requirement that

1=3 +2 )
m=1

2m(z) (B.2)

is used to denormalize all of the Jm. Since the normalization factor is
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w0

F=J +2 | J,(2), (B.3)
m=1

each Jm is found by dividing the respective recursion result by the
normalization factor.

Once the Jm are found, the Ym can be found using a forward recursion
of B.1 since the Ym increase with increasing order. The starting values

for the recursion are

m J,, (z)
2 z & b 2k
Yo(z) bl i [ln (~-2—-)+ Y] L Wk Z &) K 3 (B.4)

and from the Wronskian relations,

2 &
YI(Z) = [.]l(z) YO(Z) - —ITZ-J /JO(Z) I (B.5)

Here, the principal argument is used for 1ln(z) and care is taken not to

specify (z) as an exact zero of Jo(z), or of JN-I(Z)' Also, Y is the
constant 0.5772.
To generate the Jm, an order must be chosen at which to start the

recursion. The large-order asymptotic expression for Jm is

n
1 ez

) I [‘] (B.6)

= \/Zun S

and as n>», the asymptote approaches zero. The initial choice of (0+j0)

for JN was in error by approximately
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since JN was assumed to be zero. By specifying an acceptable absolute

error ¢ , the starting order can be found by numerically solving the

equation

ez = - o -
N = ST 2 (B.3)

Four digit accuracy was desired, so : was chosen as 0.0001.
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APPENDIX C

EVALUATION OF CLAUSEN'S INTEGRAL

In Chapter 2 it became neccesary to evaluate the sums

e ) sxn (ko) .1
and
gley = § S0 SE0) (C.2)
k=1 K

Equation C.1 is a restatement of Clausen's integral, found in any major

handbook, and is just

7 (2k) (0 ) s

) = 6 - 0) + 2o — - .
£(0) 1 - In(0) 2 kz 2k(2k + 1) ) {c.3)
where ¢ 1is the Rieman-Zeta function, also found in most handbooks.
Although neither C.1 nor C.3 is a closed-form expression, C.3 converges
much more rapidly then does C.1.

Equation C.2 is related to C.1 since

). c 'O'S"'lﬁ BTO')” e f ) ‘li_:_y(,k_()l do + ¢z(3) . (C.4)

k=1 0 k=1

Thus C.2 can be restated as
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g(8) = 02 —‘2‘(——)———4—+z ;

£ (2k) (u y 2k
k

| 2k(2kFD) (2kk2) \20) g 65

which has a much more rapid rate of convergence than C.2.
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